Abstract
Estimating the exposure time to single infectious pathogens and the associated incubation period, based on symptom onset data, is crucial for identifying infection sources and implementing public health interventions. However, data from rapid surveillance systems designed for early outbreak warning often come with outliers originated from individuals who were not directly exposed to the initial source of infection (i.e. tertiary and subsequent infection cases), making the estimation of exposure time challenging. To address this issue, this study uses a three-parameter lognormal distribution and proposes a new γ-divergence-based robust approach for estimating the parameter corresponding to exposure time with a tailored optimization procedure using the majorization-minimization algorithm, which ensures the monotonic decreasing property of the objective function. Comprehensive numerical experiments and real data analyses suggest that our method is superior to conventional methods in terms of bias, mean squared error, and coverage probability of 95% confidence intervals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.