Abstract

Secondary trait genetic association provides insight into the genetic architecture of disease etiology but requires caution in estimation. Ignoring case-control sampling may introduce bias into secondary trait association. In this paper, we compare the efficiency and robustness of various inverse probability weighted (IPW) estimators and maximum likelihood (ML) estimators. ML methods have been proposed but require correct modeling of both the secondary and the primary trait associations for valid inference. We show that ML methods using a misspecified primary trait model can severely inflate the type I error. IPW estimators are typically less efficient than ML estimators but are robust against model misspecification. When the secondary trait is available for the entire cohort, the IPW estimator with selection probabilities estimated nonparametrically and the augmented IPW estimator improve efficiency over the simple IPW estimator. We conclude that in large genetic association studies with complex sampling schemes, IPW-based estimators offer flexibility and robustness, and therefore are a viable option for analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.