Abstract

The robust design of horizontal axis wind turbines, including both parameter design and tolerance design, is presented. A simple way of designing robust horizontal axis wind turbine systems under realistic conditions is outlined with multiple design parameters (variables), multiple objectives, and multiple constraints simultaneously by using the traditional Taguchi method and its extensions. The performance of the turbines is predicted using the axial momentum theory and the blade element momentum theory. In the parameter design stage, the energy output of the turbine is maximized using the Taguchi method and an extended penalty-based Taguchi method is proposed to solve constrained parameter design problems. The results of the unconstrained and constrained parameter design problems, in terms of the objective function and constraints are compared. Using an appropriate set of tolerance settings of the parameters, the tolerance design problem is formulated so as to yield an economical design, while ensuring a minimal variability in the performance of the wind turbine. The resulting multi-objective tolerance design problem is solved using the traditional Taguchi method. The present work provides a simple and economical approach for the robust optimal design of horizontal axis wind turbines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.