Abstract
Pancreatic cancer (PC) has a reported mortality of 98% and a 5-y survival rate of 6.7%. Experienced gastroenterologists detect 80% of those with early-stage PC by endoscopic ultrasonography (EUS). Here we propose an automatic second reader strategy to detect PC in an entire EUS procedure, rather than focusing on pre-selected frames, as the state-of-the-art methods do. The method unmasks echo tumoral patterns in frames with a high probability of tumor. First, speeded up robust features define a set of interest points with correlated heterogeneities among different filtering scales. Afterward, intensity gradients of each interest point are summarized by 64 features at certain locations and scales. A frame feature vector is built by concatenating statistics of each feature of the 15 groups of scales. Then, binary classification is performed by Support Vector Machine and Adaboost models. Evaluation was performed using a data set comprising 55 participants, 18 of PC class (16,585 frames) and 37 subjects of non-PC class (49,664 frames), randomly splitting 10 times. The proposed method reached an accuracy of 92.1%, sensitivity of 96.3% and specificity of 87.8.3%. The observed results are also stable in noisy experiments while deep learning approaches fail to maintain similar performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.