Abstract

In this letter, we present an improved index-based a-posteriori probability (APP) decoding approach for the error-resilient transmission of packetized variable-length encoded Markov sources. The proposed algorithm is based on a novel two-dimensional (2D) state representation which leads to a three-dimensional trellis with unique state transitions. APP decoding on this trellis is realized by employing a 2D version of the BCJR algorithm where all available source statistics can be fully exploited in the source decoder. For an additional use of channel codes the proposed approach leads to an increased error-correction performance compared to a one-dimensional state representation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.