Abstract

In this paper, the robust stochastic stabilization problem for the class of discrete-time uncertain Markovian jump linear systems (MJLS) with actuator saturation is considered. The definition of domain of attraction in mean square sense (DoA-MSS) is introduced to analyze the stochastic stability of the closed-loop system. By using a class of stochastic Lyapunov function which is dependent on the jump mode and saturation function, design procedures for both the mode-dependent and mode-independent state feedback controllers are developed based on the Linear Matrix Inequality (LMI) approach. Finally, a numerical example is provided to show the usefulness of the proposed techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.