Abstract

The Canadian SuperCritical Water-cooled Reactor (SCWR) is a once-through pressure tube–type SCWR under development in Canada. It is a multivariable system with strong cross coupling and a high degree of nonlinearity. The outputs are sensitive to disturbances, and the variations in the thermal parameters should be limited to avoid thermal stress to its components. Therefore, designing an adequate control system is challenging. In this paper, robust multivariable feedback control and feedforward control are proposed to design the control system of the Canadian SCWR. Three uncertainty sources are considered: unmodeled uncertainty, linearization uncertainty, and model reduction uncertainty. These uncertainties are evaluated taking into account all aspects affecting the linear dynamic model used in the robust controller synthesis, and the uncertainty bounds are determined to cover the uncertainties. The robust feedback controller is synthesized using the μ-synthesis approach. The feedforward control is added to the robust feedback control to further improve the control performance. It is obtained through disturbance compensation features for a feedforward controller. The control performance of the hybrid control system is evaluated based on the nonlinear simulation by introducing different setpoint changes. The designed control system can stabilize the Canadian SCWR, and the control performance is satisfactory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.