Abstract

In this paper, we propose a robust control scheme for a free-floating space robot system where a robot arm is mounted on a free-floating base—a satellite, spacecraft or space station. The base is not controlled by external moments or forces. We model the system as an extended robot, including a pseudo-arm representing the base motion produced by six hypothetical passive joints, and a real robot arm. This model allows us to categorize the free-floating space robot system as a specific type of under-actuated system with mixed passive and active joints. We then discuss some fundamental properties of such a system. By means of an input-output linearization technique, we demonstrate that the internal dynamics of the system are nonlinear parametric and therefore, the control of the system using conventional robot control schemes is not feasible. To overcome the difficulty in controlling the internal dynamics subject to parameter uncertainty, and to avoid the measurement of the base acceleration, we develop a ro...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.