Abstract
A stable walking motion requires effective gait balancing and robust posture correction algorithms. However, to develop and implement such intelligent motion algorithms remain a challenging task for researchers. In order to minimize the modeling errors and disturbances, this paper presents an alternative approach in generating a stable Centre-of-Mass (CoM) trajectory by applying augmented model predictive control. The propose approach is to apply Augmented Model Predictive Control (AMPC) algorithm with on-line time shift and look ahead to process future data to optimize a control signal by minimizing a cost function so that the system is able to track the reference Zero Moment Point (ZMP) as close as possible, and at the same time to limit the motion jerk in order to improve the robot walking stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.