Abstract
Fabrication of stable and functional patterns on the surface of PTFE remains a great technical challenge owing to its inertness and high hydrophobicity. Here, we report for the first time the fabrication of functional micropatterns on the PTFE surface by selectively irradiating plasma-treated PTFE coated with the monomer solution. A series of uniform highly dense poly(dopamine methacrylamide) (denoted as PDMA) line patterns with line/pitch widths of 20/20 and 50/50 μm are fabricated on the surface of PTFE (denoted as PDMA-p/PTFE) using dopamine methacrylamide (DMA) as the monomer. Surface graft copolymerization occurs and is attributed to the universal adsorption of DMA and the low grafting energy barrier, compared with the polymerization energy barrier, which is also demonstrated by the DFT calculations. Further, robust well-defined metal Ag or Cu patterns with strong adhesion strength are fabricated on the surface of the PTFE film by electroless deposition and are demonstrated for applications in flexible electronics. The approach is demonstrated to be versatile for fabrication of PDMA micropatterns onto a wide range of polymeric substrates, including polypropylene and acrylonitrile butadiene styrene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.