Abstract

Robust estimation of a random vector in a linear model in the presence of model uncertainties has been studied in several recent works. While previous methods considered the case in which the uncertainty is in the signal covariance, and possibly the model matrix, but the noise covariance is assumed to be completely specified, here we extend the results to the case where the noise statistics may also be subjected to uncertainties. We propose several different approaches to robust estimation, which differ in their assumptions on the given statistics. In the first method, we assume that the model matrix and both the signal and the noise covariance matrices are uncertain, and develop a minimax mean-squared error (MSE) estimator that minimizes the worst case MSE in the region of uncertainty. The second strategy assumes that the model matrix is given and tries to uniformly approach the performance of the linear minimum MSE estimator that knows the signal and noise covariances by minimizing a worst case regret measure. The regret is defined as the difference or ratio between the MSE attainable using a linear estimator, ignorant of the signal and noise covariances, and the minimum MSE possible when the statistics are known. As we show, earlier solutions follow directly from our more general results. However, the approach taken here in developing the robust estimators is considerably simpler than previous methods

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.