Abstract

We propose a robust and automatic method to construct manifold cages for 3D triangular meshes. The cage contains hundreds of triangles to tightly enclose the input mesh without self-intersections. To generate such cages, our algorithm consists of two phases: (1) construct manifold cages satisfying the tightness, enclosing, and intersection-free requirements and (2) reduce mesh complexities and approximation errors without violating the enclosing and intersection-free requirements. To theoretically make the first stage have those properties, we combine the conformal tetrahedral meshing and tetrahedral mesh subdivision. The second step is a constrained remeshing process using explicit checks to ensure that the enclosing and intersection-free constraints are always satisfied. Both phases use a hybrid coordinate representation, i.e., rational numbers and floating point numbers, combined with exact arithmetic and floating point filtering techniques to guarantee the robustness of geometric predicates with a favorable speed. We extensively test our method on a data set of over 8500 models, demonstrating robustness and performance. Compared to other state-of-the-art methods, our method possesses much stronger robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.