Abstract

BiOCl has attracted much attention due to its robust layered structure, excellent photocatalytic activity and nontoxicity. However, its practical application is hindered by its narrowband UV photoresponse and rapid recombination of photocarriers. Herein, zero-dimensional Bi-anchoring carbon quantum dot (Bi-CD)/two-dimensional BiOCl heterojunction (Bi-CD/BiOCl) photocatalysts are designed and synthesized by a facile hydrothermal method. Under 190-1100 nm broadband light irradiation, the optimized Bi-CD/BiOCl sample exhibits a superb rhodamine B (RhB) degradation rate of nearly 100%, which is 2.3 (1.7) times that of pristine BiOCl (CD/BiOCl). Additionally, the optimized sample exhibits an RhB degradation rate of up to 88.1% even under direct outdoor light and robust durability in water solution. Experimental results combined with DFT calculations reveal that the superior photocatalytic activity arises from the synergetic effects of broader light absorption due to the incorporation of CD, extra hot electron excitation by the localized surface plasmon resonance (LSPR) effect of metallic Bi, and enhanced electron transfer across the heterojunction interface as well as the existence of more oxygen vacancy traps in BiOCl. This work gives insights into the structure and photocatalytic properties of Bi-CD/BiOCl and provides a new strategy for the design and fabrication of robust high-performance photocatalysts under wide spectrum light irradiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.