Abstract
Conventional automatic voltage regulator (AVR) schemes use thyristor-based rectifiers in which the generator field voltage is varied by changing the thyristor's firing angle. The conventional AVR has been known to cause voltage sags and extended under-voltages, especially under fault conditions. Several control schemes such as digital proportional–integral–derivative (PID) controllers, adaptive control schemes, and intelligent control schemes have been proposed in the literature. However, these schemes increase the complexity of the system. This work proposes a DC−DC converter-based AVR as an alternative to the rectifier-controlled AVR. The DC−DC converter is arranged in step-down (buck-type) configuration. The DC−DC converter uses metal-oxide-semiconductor field-effect transistor/insulated-gate bipolar transistors and has a faster response than the thyristors, thereby resulting in faster and precise control of the generator field voltage. The DC−DC converter is connected to the field circuit of the generator, and the terminal voltage of the generator is regulated by a PI controller by varying the converter duty cycle to control the generator field voltage. Simulation and experimental investigation has shown that the proposed scheme exhibits a better transient response and is robust under DC input voltage variation and generator load changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.