Abstract

<para xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> Audio-visual speech recognition (AVSR) using acoustic and visual signals of speech has received attention because of its robustness in noisy environments. In this paper, we present a late integration scheme-based AVSR system whose robustness under various noise conditions is improved by enhancing the performance of the three parts composing the system. First, we improve the performance of the visual subsystem by using the stochastic optimization method for the hidden Markov models as the speech recognizer. Second, we propose a new method of considering dynamic characteristics of speech for improved robustness of the acoustic subsystem. Third, the acoustic and the visual subsystems are effectively integrated to produce final robust recognition results by using neural networks. We demonstrate the performance of the proposed methods via speaker-independent isolated word recognition experiments. The results show that the proposed system improves robustness over the conventional system under various noise conditions without a priori knowledge about the noise contained in the speech. </para>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.