Abstract

Approximation of a tensor network by approximating (e.g., factorizing) one or more of its constituent tensors can be improved by canceling the leading-order error due to the constituents' approximation. The utility of such robust approximation is demonstrated for robust canonical polyadic (CP) approximation of a (density-fitting) factorized two-particle Coulomb interaction tensor. The resulting algebraic (grid-free) approximation for the Coulomb tensor, closely related to the factorization appearing in pseudospectral and tensor hypercontraction approaches, is efficient and accurate, with significantly reduced rank compared to the naive (nonrobust) approximation. Application of the robust approximation to the particle-particle ladder term in the coupled-cluster singles and doubles reduces the size complexity from O (N6) to O (N5) with robustness ensuring negligible errors in chemically relevant energy differences using CP ranks approximately equal to the size of the density-fitting basis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.