Abstract

An ideal type-III nodal point is generated by crossing a completely flat band and a dispersive band along a certain momentum direction. To date, the type-III nodal points found in two-dimensional (2D) materials have been mostly accidental and random rather than ideal cases, and no one mentions what kind of lattice can produce ideal nodal points. Here, we propose that ideal type-III nodal points can be obtained in a diamond-like lattice. The flat bands in the lattice originate from destructive interference of wavefunctions, and thus are intrinsic and robust. Moreover, the specific lattice can be realized in some 2D carbon networks, such as T-graphene and its derivatives. All the carbon structures possess type-III Dirac points. In two of the structures, consisting of triangular carbon rings, the type-III Dirac points are located just on the Fermi level and the Fermi surface is very clean. Our research not only opens a door to finding the ideal type-III Dirac points, but also provides 2D materials for exploring their physical properties experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.