Abstract

This paper proposes adaptive control for vehicle active suspensions with unknown nonlinear dynamics (e.g., nonlinear spring and piece-wise damper dynamics). An adaptive control is designed to stabilize the altitude of vehicles and to improve the ride comfort, where an augmented neural network is developed to provide the online compensation for the unknown dynamics. A novel adaptive law is proposed to estimate the NN weights and essential model parameters (e.g., mass of vehicle body, inertia for pitch motion). The parameter estimation error is derived and used as a novel leakage term superimposed on the adaptation to guarantee the error convergence. Theoretical studies are provided to address the closed-loop system performance and to compare the novel adaptive law with traditional adaptive laws. The suspension space limitations and dynamic tire loads are also analyzed. Finally, comparative simulations are included to verify the effectiveness of the proposed control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.