Abstract

This paper proposes a robust adaptive control strategy for a class of state-constrained uncertain nonlinear systems with prescribed transient and steady-state behavior. The prescribed tracking performance can be characterized by constraints on an output tracking error. Both state and output constraints are achieved by bounding integral barrier Lyapunov functions in the backstepping procedure. A robust adaptive term is designed to compress auxiliary system uncertainties without the knowledge of their bounds. The satisfaction of control constraints and tracking error convergence are verified by theoretical analysis and are illustrated by simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.