Abstract

It is well accepted that remanufacturing, the returning of a product that has reached the end of its service life to its original condition, is economically and environmentally beneficial. Robotizing disassembly can make remanufacturing even more cost-effective by removing a substantial proportion of the labour costs associated with dismantling end-of-life products for subsequent processing. As unplugging of press-fitted components is a common operation in disassembly, it is appropriate to investigate how it can be robotized. This paper discusses an unplugging technique, twist-and-pull or twisting-pulling, to reduce the axial frictional resistance during the unplugging process and enable a robot to perform it easily. Through theoretical modelling, simulations, and experimental analysis, the paper explores the interaction between twisting, pulling and axial friction reduction during unplugging. Analysis of the experimental, simulation and theoretical results has confirmed that for a small radial interference, twist-and-pull reduces the axial friction and the maximum required unplugging force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.