<p><strong>Background:</strong>The treatment of glioma remains a significant challenge with high recurrence rates, morbidity, and mortality. Merging image guided robotic technology with microsurgery adds a new dimension as they relate to surgical ergonomics, patient safety, precision, and accuracy.</p> <p><strong>Methods:</strong>An image-guided robot, called neuroArm, has been integrated into the neurosurgical operating room, and used to augment the surgical treatment of glioma in 18 patients. A case study illustrates the specialized technical features of a teleoperated robotic system that could well enhance the performance of surgery. Furthermore, unique positional and force information of the bipolar forceps during surgery were recorded and analyzed.</p> <p><strong>Results:</strong>The workspace of the bipolar forceps in this robot-assisted glioma resection was found to be 25 × 50 × 50 mm. Maximum values of the force components were 1.37, 1.84, and 2.01 N along x, y, and z axes, respectively. The maximum total force was 2.45 N. The results indicate that the majority of the applied forces were less than 0.6 N.</p> <p><strong>Conclusion:</strong>Robotic surgical systems can potentially increase safety and performance of surgical operation via novel features such as virtual fixtures, augmented force feedback, and haptic high-force warning system. The case study using neuroArm robot to resect a glioma, for the first time, showed the positional information of surgeon's hand movement and tool-tissue interaction forces.</p>

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call