Abstract
Abstract To ensure the human safety in the process of human–robot cooperation, this paper proposes a robot collision detection method without external sensors based on time-series analysis (TSA). In the investigation, first, based on the characteristics of the external torque of the robot, the internal variation of the external torque sequence during the movement of the robot is analyzed. Next, a time-series model of the external torque is constructed, which is used to predict the external torque according to the historical motion information of the robot and generate a dynamic threshold. Then, the detailed process of time-series analysis for collision detection is described. Finally, the real-machine experiment scheme of the proposed real-time collision detection algorithm is designed and is used to perform experiments with a six degrees-of-freedom (6DOF) articulated industrial robot. The results show that the proposed method helps to obtain a detection accuracy of 100%; and that, as compared with the existing collision detection method based on a fixed symmetric threshold, the proposed method based on TSA possesses smaller detection delay and is more feasible in eliminating the sensitivity difference of collision detection in different directions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.