Abstract
Any road traffic management application of intelligent transportation systems (ITS) requires traffic characteristics data such as vehicle density, speed, etc. This paper proposes a robust and novel vehicle detection framework known as multi-layer continuous virtual loop (MCVL) that uses computer vision techniques on road traffic video to estimate traffic characteristics. Estimations of traffic data such as speed, area occupancy and an exclusive spatial feature named as corner detail value (CDV) acquired using MCVL are proposed. Further, the estimation of traffic congestion (TraCo) level using these parameters is also presented. The performances of the entire framework and TraCo estimation are evaluated using several benchmark traffic video datasets and the results are presented. The results show that the improved accuracy in vehicle detection process using MCVL subsequently improves the precision of TraCo estimation. This also means that the proposed framework is well suited to applications that need traffic characteristics to update their traffic information system in real time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Intelligent Information Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.