Abstract

In this study, we present a sophisticated multi-label deep learning framework for the prediction of RNA-RBP (RNA-binding protein) interactions, a critical aspect in understanding RNA functionality modulation and its implications in disease pathogenesis. Our approach leverages machine learning to develop a rapid and cost-efficient predictive model for these interactions. The proposed model captures the complex characteristics of RNA and recognizes corresponding RBPs through its dual-module architecture. The first module employs convolutional neural networks (CNNs) for intricate feature extraction from RNA sequences, enabling the model to discern nuanced patterns and attributes. The second module is a multi-view multi-label classification system incorporating a feature attention mechanism. The second module is a multi-view multi-label classification system that utilizes a feature attention mechanism. This mechanism is designed to intricately analyze and distinguish between common and unique deep features derived from the diverse RNA characteristics. To evaluate the model's efficacy, extensive experiments were conducted on a comprehensive RNA-RBP interaction dataset. The results emphasize substantial improvements in the model's ability to predict RNA-RBP interactions compared to existing methodologies. This advancement emphasizes the model's potential in contributing to the understanding of RNA-mediated biological processes and disease etiology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.