Abstract

Resistance to therapeutic drugs is a frequent phenomenon in hematologic malignancies, causing treatment failure in patients with leukemias and lymphomas. Overexpression of the multidrug-resistance gene (MDR-1) and its translational product P-glycoprotein (PgP) represents one mechanism of fatal drug resistance. We constructed a nonviral, transposon-based vector system for the stable knockdown of PgP in chronic myeloid leukemia cell lines resistant to imatinib and doxorubicin. Using this strategy, PgP expression was completely knocked down 72 hours after vector inoculation and lasted for several months. Cellular efflux of the PgP substates rhodamine and doxorubicin was abolished. Vector-treated cells were resensitized to imatinib- and doxorubicin-induced cell death. Using chronic myeloid leukemia as a model, we show that PgP-mediated resistance to imatinib and anthracyclines can be durably reversed by nonviral, transposon-based knockdown of PgP in malignant cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.