Abstract
RNA interference (RNAi) remains a powerful technique that allows for the targeted reduction of gene expression through mRNA degradation. This technique is applicable to a wide variety of organisms and is highly efficient in the species-rich order Coleoptera (beetles). Here, we summarize the necessary steps for developing this technique in a novel organism and illustrate its application to the different developmental stages of the aquatic diving beetle Thermonectus marmoratus. Target gene sequences can be obtained cost-effectively through the assembly of transcriptomes against a close relative with known genomics or de novo. Candidate gene cloning utilizes a specific cloning vector (the pCR4-TOPO plasmid), which allows the synthesis of double-stranded RNA (dsRNA) for any gene with the use of a single common primer. The synthesized dsRNA can be injected into either embryos for early developmental processes or larvae for later developmental processes. We then illustrate how RNAi can be injected into aquatic larvae using immobilization in agarose. To demonstrate the technique, we provide several examples of RNAi experiments, generating specific knockdowns with predicted phenotypes. Specifically, RNAi for the tanning gene laccase2 leads to cuticle lightening in both larvae and adults, and RNAi for the eye pigmentation gene white produces a lightening/lack of pigmentation in eye tubes. In addition, the knockdown of a key lens protein leads to larvae with optical deficiencies and a reduced ability to hunt prey. Combined, these results exemplify the power of RNAi as a tool for investigating both morphological patterning and behavioral traits in organisms with only transcriptomic databases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.