Abstract

Over recent years, long-range RNA structure has emerged as a factor that is fundamental to alternative splicing regulation. An increasing number of human disorders are now being associated with splicing defects; hence it is essential to develop methods that assess long-range RNA structure experimentally. RNA in situ conformation sequencing (RIC-seq) is a method that recapitulates RNA structure within physiological RNA-protein complexes. In this work, we juxtapose pairs of conserved complementary regions (PCCRs) that were predicted in silico with the results of RIC-seq experiments conducted in seven human cell lines. We show statistically that RIC-seq support of PCCRs correlates with their properties, such as equilibrium free energy, presence of compensatory substitutions, and occurrence of A-to-I RNA editing sites and forked eCLIP peaks. Exons enclosed in PCCRs that are supported by RIC-seq tend to have weaker splice sites and lower inclusion rates, which is indicative of post-transcriptional splicing regulation mediated by RNA structure. Based on these findings, we prioritize PCCRs according to their RIC-seq support and show, using antisense nucleotides and minigene mutagenesis, that PCCRs in two disease-associated human genes, PHF20L1 and CASK, and also PCCRs in their murine orthologs, impact alternative splicing. In sum, we demonstrate how RIC-seq experiments can be used to discover functional long-range RNA structures, and particularly those that regulate alternative splicing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.