Abstract

Neurodegenerative diseases are a diverse group of disorders that affect different neuron populations, differ in onset and severity, and can be either inherited or sporadic. One common pathological feature of most of these diseases is the presence of insoluble inclusions in and around neurons, which largely consist of misfolded and aggregated protein. For this reason, neurodegenerative diseases are typically thought to be disorders of aberrant protein processing, in which the cumulative effects of misfolded protein aggregates overwhelm the neuron's proteostatic capacity. However, a growing body of evidence suggests a role for abnormal RNA processing in neurodegenerative disease. The importance of RNA metabolism in disease was highlighted by the discovery of TDP-43 (TAR DNA-binding protein of 43 kDa), an RNA-binding protein (RBP), as a primary component of insoluble aggregates in patients with sporadic amyotrophic lateral sclerosis (ALS). Subsequently, inherited mutations in TDP-43 and the structurally related RBP, FUS/TLS (fused in sarcoma/translated in liposarcoma), were found to cause ALS. These exciting findings have ushered in a new era of ALS research in which the deregulation of RNA metabolism is viewed as a central cause of motor neuron deterioration. In addition, the fact that neuropathologically and anatomically distinct neurodegenerative diseases display altered RNA metabolism suggests that common pathologic mechanisms may underlie many of these disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.