Abstract

The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is essential for the processing of the HCV polyprotein, the replication of HCV RNA, and to short circuit innate immunity signaling. NS3 contains an N-terminal domain with protease activity and a C-terminal domain with helicase activity. The two domains communicate with each other along with other HCV and cellular proteins. Herein we show that RNAs can bind directly to the active site cleft of the NS3 protease domain (NS3P) and inhibit proteolysis of peptide substrates. RNAs that are less apt to form intramolecular structures have a stronger inhibitory activity than RNAs with more stable base paired regions. Two mutations in the protease domain that resulted in decreased affinity to ssRNA were also defective in RNA-induced ATPase activity from the helicase domain of NS3. The coordinated effects on inhibition of protease activity and stimulation of ATPase activity raise the possibility that RNA serves as a regulatory switch for the two processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.