Abstract

This paper describes the nonlinear parameter optimization of power system stabilizer (PSS) by using the reduced multivariate polynomial (RMP) algorithm with the one-shot property. The RMP model estimates the second-order partial derivatives of the Hessian matrix after identifying the trajectory sensitivities, which can be computed from the hybrid system modeling with a set of differential-algebraic-impulsive-switched (DAIS) structure for a power system. Then, any nonlinear controller in the power system can be optimized by achieving a desired performance measure, mathematically represented by an objective function (OF). In this paper, the output saturation limiter of the PSS, which is used to improve low-frequency oscillation damping performance during a large disturbance, is optimally tuned exploiting the Hessian estimated by the RMP model. Its performances are evaluated with several case studies on both single-machine infinite bus (SMIB) and multi-machine power system (MMPS) by time-domain simulation. In particular, all nonlinear parameters of multiple PSSs on IEEE benchmark two-area four-machine power system are optimized to be robust against various disturbances by using the weighted sum of the OFs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.