Abstract

BackgroundRNA-protein 3D complex structure prediction is still challenging. Recently, a template-based approach PRIME is proposed in our team to build RNA-protein 3D complex structure models with a higher success rate than computational docking software. However, scoring function of RNA alignment algorithm SARA in PRIME is size-dependent, which limits its ability to detect templates in some cases.ResultsHerein, we developed a novel RNA 3D structural alignment approach RMalign, which is based on a size-independent scoring function RMscore. The parameter in RMscore is then optimized in randomly selected RNA pairs and phase transition points (from dissimilar to similar) are determined in another randomly selected RNA pairs. In tRNA benchmarking, the precision of RMscore is higher than that of SARAscore (0.88 and 0.78, respectively) with phase transition points. In balance-FSCOR benchmarking, RMalign performed as good as ESA-RNA with a non-normalized score measuring RNA structural similarity. In balance-x-FSCOR benchmarking, RMalign achieves much better than a state-of-the-art RNA 3D structural alignment approach SARA due to a size-independent scoring function. Take the advantage of RMalign, we update our RNA-protein modeling approach PRIME to version 2.0. The PRIME2.0 significantly improves about 10% success rate than PRIME.ConclusionBased on a size-independent scoring function RMscore, a novel RNA 3D structural alignment approach RMalign is developed and integrated into PRIME2.0, which could be useful for the biological community in modeling protein-RNA interaction.

Highlights

  • RNA-protein 3D complex structure prediction is still challenging

  • Based on SARA, a template-based approach PRIME is proposed in our team to build RNA-protein complex 3D structure models, which shows a higher success rate than computational docking software

  • Here we present the results of comparison with ESA-RNA, SARA, SETTER and Click

Read more

Summary

Introduction

A template-based approach PRIME is proposed in our team to build RNA-protein 3D complex structure models with a higher success rate than computational docking software. Similar to SARA-Coffee [20] coupling with sequence alignments, SupeRNAlign iteratively superimposes the RNA fragment structures with R3D and maximizes the local fit [21]. They found that R3D is scoring the best among the tools without ESA-RNA in benchmark. Based on SARA, a template-based approach PRIME is proposed in our team to build RNA-protein complex 3D structure models, which shows a higher success rate than computational docking software. The scoring function of RNA alignment algorithm SARA is size-dependent, which limits its ability to detect potential templates in some cases

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.