Abstract

AbstractThe effect of Coriolis force on the rivulet (fingering) instability, the onset of rivulet phenomena during spin coating, is investigated by flow visualization experiments incorporating with dimensional analysis. This study demonstrates that the Coriolis force will affect significantly the critical radius of rivulet instability and the deflection angle of instability rivulet. For the cases of low Bond number, the effect of Coriolis force is a stabilizing factor, and the dimensionless critical radius increases slightly with increasing rotational Reynolds number Reω. In the case of high Bond number, the effect of Coriolis force becomes a destabilizing factor while Reω < 1, and a characteristic length is found by balancing the viscous force with the surface tension. For Reω > 1, the radial Corilois force, which is always pointing inward, plays a stabilizing role with magnitude Reω2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.