Abstract
AbstractThe combined cooling, heating, and power (CCHP) co‐generation system is an alternative for developing sustainable energy systems. Inside a multi‐energy CCHP microgrid, electric, heat, and cool demands are supplied with a high efficiency. Integrating various energy conversion technologies and storage systems allows managing different resources and taking advantage of electric market participation. However, the uncertainties associated with source demand and prices should be taken into account. In this regard, this paper proposes stochastic programming to optimize the operation cost and emission penalty of a multi‐energy CCHP microgrid considering the mathematical model of components and related uncertainties. Using the proposed optimization problem, the system operator can derive bidding/offering curves in the electric market. To mitigate the financial risks, the conditional value‐at‐risk (CVaR) approach is integrated to provide different risk‐averse strategies. From the results, it is found that under the risk‐averse strategy, by paying 0.4% more money, the risk of CCHP's operation cost instability will be reduced by approximately 16.82%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.