Abstract

In agile Cyber-physical Production System (CPPS) engineering, multi-disciplinary teams work concurrently and iteratively on various CPPS engineering artifacts, based on engineering models and Product-Process-Resource (PPR) knowledge, to design and build a production system. However, in such settings it is difficult to keep track of (i) the effects of changes across engineering disciplines, and (ii) their implications on risks to engineering quality, represented in Failure Mode and Effects Analysis (FMEA). To tackle these challenges and systematically co-evolve FMEA and PPR models, requires propagating and validating changes across engineering and FMEA artifacts. To this end, we design and evaluate a Multi-view FMEA +PPR (MvFMEA+PPR) meta-model to represent relationships between FMEA elements and CPPS engineering assets and trace their change states and dependencies in the design and validation lifecycle. We evaluate the MvFMEA + PPR meta-model in a feasibility study on the quality of a screwing process from automotive production. The study results indicate the MvFMEA + PPR meta-model to be more effective than alternative traditional approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.