Abstract
A linear stability analysis for dune and ripple formation is presented that implements a rotational two-dimensional flow model valid in the smooth as well as in the transitional and rough flow regimes. Sediment is assumed to be transported as bedload, disregarding the role of suspension. Therefore, the main mechanism driving instability, for both ripples and dunes, is the phase lag between bed shear stress and bed elevation. Ripples are shown to be confined to relatively low values of the Shields parameter and of the particle Reynolds number. For higher values of the Shields parameter and of the particle Reynolds number (and thus of the Froude number and of the roughness Reynolds number), ripples are replaced by dunes. The present analysis ultimately allows for a successful unification of the theories of dune and ripple formation and for a clarification of the debated role of ripples on the formation of dunes. A good agreement between predicted and observed wavelengths for both ripples and dunes is found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.