Abstract

The common focusing characteristics of a cylindrical microlens with a long focal depth and under a given multiple-wavelength illumination are analyzed based on the boundary element method (BEM). The surface-relief profile of a finite-substrate-thickness microlens with a long focal depth is presented. Its focusing performances, such as the common extended focal depth (CEFD), the spot size, and the diffraction efficiency, are numerically studied in the case of TE polarization. The results show that the CEFD of the microlens increases initially, reaches a peak value, and then decreases with increasing preset focal depth. Two modified profiles of a finite-substrate-thickness cylindrical microlens are proposed for enlarging the CEFD. The rigorous numerical results indicate that the modified surface-relief structures of a cylindrical microlens can successfully modulate the optical field distribution to achieve longer CEFD, higher transverse resolution, and higher diffraction efficiency simultaneously, compared with the prototypical microlens. These investigations may provide useful information for the design and application of micro-optical elements in various multiwavelength optical systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.