Abstract
We find analytic upper and lower bounds of the Lyapunov exponents of the product of random matrices related to the one-dimensional disordered Ising model, using a deterministic map which transforms the original system into a new one with smaller average couplings and magnetic fields. The iteration of the map gives bounds which estimate the Lyapunov exponents with increasing accuracy. We prove, in fact, that both the upper and the lower bounds converge to the Lyapunov exponents in the limit of infinite iterations of the map. A formal expression of the Lyapunov exponents is thus obtained in terms of the limit of a sequence. Our results allow us to introduce a new numerical procedure for the computation of the Lyapunov exponents which has a precision higher than Monte Carlo simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.