Abstract
We prove a graded version of Alev-Poloâs rigidity theorem: the homogenization of the universal enveloping algebra of a semisimple Lie algebra and the Rees ring of the Weyl algebras $A_n(k)$ cannot be isomorphic to their fixed subring under any finite group action. We also show the same result for other classes of graded regular algebras including the Sklyanin algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.