Abstract
This paper considers a stochastic optimization problem over the fixed point sets of quasinonexpansive mappings on Riemannian manifolds. The problem enables us to consider Riemannian hierarchical optimization problems over complicated sets, such as the intersection of many closed convex sets, the set of all minimizers of a nonsmooth convex function, and the intersection of sublevel sets of nonsmooth convex functions. We focus on adaptive learning rate optimization algorithms, which adapt step-sizes (referred to as learning rates in the machine learning field) to find optimal solutions quickly. We then propose a Riemannian stochastic fixed point optimization algorithm, which combines fixed point approximation methods on Riemannian manifolds with the adaptive learning rate optimization algorithms. We also give convergence analyses of the proposed algorithm for nonsmooth convex and smooth nonconvex optimization. The analysis results indicate that, with small constant step-sizes, the proposed algorithm approximates a solution to the problem. Consideration of the case in which step-size sequences are diminishing demonstrates that the proposed algorithm solves the problem with a guaranteed convergence rate. This paper also provides numerical comparisons that demonstrate the effectiveness of the proposed algorithms with formulas based on the adaptive learning rate optimization algorithms, such as Adam and AMSGrad.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.