Abstract
In the logistic regression, it is known that multicollinearity affects the variance of Maximum Likelihood Estimator (MLE). To overcome this issue, several researchers proposed alternative estimators when exact linear restrictions are available in addition to sample model. In this paper, we propose a new estimator called Stochastic Restricted Ridge Maximum Likelihood Estimator (SRRMLE) for the logistic regression model when the linear restrictions are stochastic. Moreover, the conditions for superiority of SRRMLE over some existing estimators are derived with respect to Mean Square Error (MSE) criterion. Finally, a Monte Carlo simulation is conducted for comparing the performances of the MLE, Ridge Type Logistic Estimator (LRE) and Stochastic Restricted Maximum Likelihood Estimator (SRMLE) for the logistic regression model by using Scalar Mean Squared Error (SMSE).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: British Journal of Mathematics & Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.