Abstract

Certain RNA molecules, called ribozymes, possess enzymatic, self-cleaving activity. The cleavage reaction is catalytic and no energy source is required. Ribozymes of the "hammerhead" motif were identified in plant RNA pathogens. These ribozymes possess unique secondary (and possibly tertiary) structures critical for their cleavage ability. The present study shows precise cleavage of human immunodeficiency virus type 1 (HIV-1) sequences in a cell-free system by hammerhead ribozymes. In addition to the cell-free studies, human cells stably expressing a hammerhead ribozyme targeted to HIV-1 gag transcripts have been constructed. When these cells were challenged with HIV-1, a substantial reduction in the level of HIV-1 gag RNA relative to that in nonribozyme-expressing cells, was observed. The reduction in gag RNA was reflected in a reduction in antigen p24 levels. These results suggest the feasibility of developing ribozymes as therapeutic agents against human pathogens such as HIV-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.