Abstract
Photoreceptor cells utilize ribbon synapses to transmit sensory signals at high resolution. Ribbon synapses release neurotransmitters tonically, with a high release rate made possible by continuous docking of synaptic vesicles on presynaptic ribbons. We have partially purified synaptic ribbons from retina and identified a major protein component called RIBEYE. RIBEYE is composed of a unique A domain specific for ribbons, and a B domain identical with CtBP2, a transcriptional repressor that in turn is related to 2-hydroxyacid dehydrogenases. The A domain mediates assembly of RIBEYE into large structures, whereas the B domain binds NAD + with high affinity, similar to 2-hydroxyacid dehydrogenases. Our results define a unique component of synaptic ribbons and suggest that RIBEYE evolved in vertebrates under utilization of a preexisting protein to build a unique scaffold for a specialized synapse.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.