Abstract

Databases that deal with the real world have various characteristics. New data is continuously inserted over time without limiting the length of the database, and a variety of information about the items constituting the database is contained. Recently generated data has a greater influence than the previously generated data. These are called the time-sensitive non-binary stream databases, and they include databases such as web-server click data, market sales data, data from sensor networks, and network traffic measurement. Many high utility pattern mining and stream pattern mining methods have been proposed so far. However, they have a limitation that they are not suitable to analyze these databases, because they find valid patterns by analyzing a database with only some of the features described above. Therefore, knowledge-based software about how to find meaningful information efficiently by analyzing databases with these characteristics is required. In this article, we propose an intelligent information system that calculates the influence of the insertion time of each batch in a large-scale stream database by applying the sliding window model and mines recent high utility patterns without generating candidate patterns. In addition, a novel list-based data structure is suggested for a fast and efficient management of the time-sensitive stream databases. Moreover, our technique is compared with state-of-the-art algorithms through various experiments using real datasets and synthetic datasets. The experimental results show that our approach outperforms the previously proposed methods in terms of runtime, memory usage, and scalability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.