Abstract

Flower opening is a process primarily caused by water uptake-driven petal cell expansion. while which is easily affected by water deficit during transportation of cut flowers, resulting in abnormal flower opening. The knowledge of important players during this process remains limited. We previously reported that the aquaporin RhPIP1;1 plays an important role in ethylene-regulated petal cell expansion in rose flower. Here, we identified RhRab5ip as a new interactor of RhPIP1;1. RhRab5ip belongs to the Rab5-interacting protein (Rab5ip) family and may function in vesicle trafficking pathway. By using split ubiquitin yeast two-hybrid (SUY2H) system, bimolecular fluorescence complementation (BiFC) and subcellular colocalization we confirmed the existence of physical interaction between RhPIP1;1 and RhRab5ip in yeast and plant cell. The interaction of these two proteins happened at the small punctate structures in the cytoplasm. Expression of RhRab5ip in petals increased substantially at the initial stage of flower opening and maintained at high level until flower wilting. The transcripts of both RhRab5ip and RhPIP1;1 were greatly up-regulated by ABA and GA3 treatments, while only RhPIP1;1 was down-regulated by ethylene. Moreover, both RhRab5ip and RhPIP1;1 were significantly induced by water deficit treatment after 12 h-treatment, when flowers started to wilt and showed neck bending. Taken together, these findings suggested that RhRab5ip might functionally coordinate with RhPIP1;1 in response to water deficit stress in rose flower, expanding our understanding of the possible involvement of Rab5ip protein in the regulatory network of flower opening during water deficit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.