Abstract

Cortical interneurons arise from the ganglionic eminences in the ventral telencephalon and migrate tangentially to the cortex. Although RhoA and Cdc42, members of the Rho family of small GTPases, have been implicated in regulating neuronal migration, their respective roles in the tangential migration of cortical interneurons remain unknown. Here we show that loss of RhoA and Cdc42 in the ventricular zone (VZ) of the medial ganglionic eminence (MGE) using Olig2-Cre mice causes moderate or severe defects in the migration of cortical interneurons, respectively. Furthermore, RhoA- or Cdc42-deleted MGE cells exhibit impaired migration in vitro. To determine whether RhoA and Cdc42 directly regulate the motility of cortical interneurons during migration, we deleted RhoA and Cdc42 in the subventricular zone (SVZ), where more fate-restricted progenitors are located within the ganglionic eminences, using Dlx5/6-Cre-ires-EGFP (Dlx5/6-CIE) mice. Deletion of either gene within the SVZ does not cause any obvious defects in cortical interneuron migration, indicating that cell motility is not dependent upon RhoA or Cdc42. These findings provide genetic evidence that RhoA and Cdc42 are required in progenitors of the MGE in the VZ, but not the SVZ, for proper cortical interneuron migration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.