Abstract

Limits on the exposure to high-peak-power, short-duration microwave pulses have only recently been adopted. Additional data, however, are needed to understand the effects that may be produced by exposure to high-peak-power pulsed microwaves. Four male rhesus monkeys (Macaca mulatta) were trained on an operant task for food pellet reward to investigate the behavioral effects of very high-peak-power 5.62 GHz microwaves. The operant task required monkeys to pull one plastic lever on a variable interval schedule (VI-25 s) and then respond to color signals and pull a second lever to obtain food. The monkeys were conditioned to perform a color discrimination task using one of three colors displayed by a fiber-optic cable. A red signal was the discriminative stimulus for responding on the first lever. A response on the second lever when a green signal was presented (1 s duration) delivered a food pellet. If a response on the second lever was made in the presence of a white signal, a 30-s timeout occurred. While performing the behavioral task, the monkeys were exposed to microwave pulses produced by either a military radar (FPS-26A) operating at 5.62 GHz or the same radar coupled to a Stanford linear energy doubler (SLED) pulse-forming device (ITT-2972) that enhanced peak power by a factor of nine by adding a high power pulse to the radar pulse. The effects of both types of pulses were compared to sham exposure. Peak field power densities tested were 518, 1270, and 2520 W/cm2 for SLED pulses and 56, 128, and 277 W/cm2 for the radar pulses. The microwave pulses (radar or SLED) were delivered at 100 pps (2.8 microseconds radar pulse duration; approximately 50 ns SLED pulse duration) for 20 min and produced averaged whole-body SARs of 2, 4, or 6 W/kg. Compared to sham exposures, significant alterations of lever responding, reaction time, and earned food pellets occurred during microwave exposure at 4 and 6 W/kg but not at 2 W/kg. There were no differences between radar or SLED pulses in producing behavioral effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.