Abstract

Thioredoxins are small soluble proteins that contain a redox-active disulfide (CXXC). These disulfides are tuned to oxidizing or reducing potentials depending on the function of the thioredoxin within the cell. The mechanism by which the potential is tuned has been controversial, with two main hypotheses: first, that redox potential (Em) is specifically governed by a molecular ‘rheostat’—the XX amino acids, which influence the Cys pKa values, and thereby, Em; and second, the overall thermodynamics of protein folding stability regulates the potential. Here, we use protein film voltammetry (PFV) to measure the pH dependence of the redox potentials of a series of wild-type and mutant archaeal Trxs, PFV and glutathionine-equilibrium to corroborate the measured potentials, the fluorescence probe BADAN to measure pKa values, guanidinium-based denaturation to measure protein unfolding, and X-ray crystallography to provide a structural basis for our functional analyses. We find that when these archaeal thioredoxins are probed directly using PFV, both the high and low potential thioredoxins display consistent 2H+:2e- coupling over a physiological pH range, in conflict with the conventional ‘rheostat’ model. Instead, folding measurements reveals an excellent correlation to reduction potentials, supporting the second hypothesis and revealing the molecular mechanism of reduction potential control in the ubiquitous Trx family.

Highlights

  • IntroductionThioredoxins and thioredoxin-like proteins (glutaredoxins and protein disulfide isomerases) are prevalent in nature and found throughout all kingdoms of life [1]

  • Thioredoxins and thioredoxin-like proteins are prevalent in nature and found throughout all kingdoms of life [1]

  • Mutants of AfTrx3 that altered the identity of the residues between the two active site cysteines were generated (Table 1) to test the CXXC redox rheostat model, where hydrogen bonding between the N-terminal Cys and a histidine within this active site is proposed to occur [17]

Read more

Summary

Introduction

Thioredoxins and thioredoxin-like proteins (glutaredoxins and protein disulfide isomerases) are prevalent in nature and found throughout all kingdoms of life [1]. These disulfide/dithiol oxidoreductases function via their surface-exposed, redox-active disulfide bond. The cellular functions of these proteins vary, ranging from electron transfer in response to oxidative stress. Tuning Thioredoxin Disulfide Bond Redox Potentials design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.