Abstract
Systemic experiments have been conducted to investigate the effect of drop sizes on the rheology of water-in-oil (W/O) emulsions. Three sets of emulsions with different average drop sizes were first prepared and then the corresponding rheologies were determined using a concentric viscometer. Results indicated that the flow behavior of concentrated emulsions changes qualitatively from Newtonian flow to non-Newtonian flow with shear rates. In Newtonian flow regime, a smaller drop size leads to a higher viscosity, and the increments are more pronounced at high dispersed phase volume fractions. Two local remarkable increases of the emulsion viscosity with dispersed phase volume fractions correspond to the percolation and glass-transition, respectively. In non-Newtonian flow regime, emulsions show shear-thinning behavior and can be fitted well by the power law model. For emulsions with volume fractions between 0.132 and 0.325, the flow index and consistency constant show power law relationship with the water content. Furthermore, the shear-thinning effect becomes stronger in the emulsions with smaller drop sizes. A correlation has been successfully developed for determining the clusters’ sizes in W/O emulsions and shows excellent agreement with the experimental data. As a consequence, a microscopic understanding (cluster level) was presented for the shear-thinning behavior of the emulsions in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.