Abstract

AbstractThe rheological properties of two complex mixtures of short‐chain triglycerides were experimentally determined. Dynamic or absolute viscosities of the mixtures were measured for shear rates of 0.32 to 64.69 s−1 at temperatures between 25 and 80°C. The compositions of the mixtures were based on the oil of the plant species Cuphea viscosissima VS‐320, a natural source of short‐chain triglycerides. The dynamic viscosities of these mixtures were compared to those of a traditional vegetable oil (peanut oil) and diesel fuel. The results of this comparison were used to make estimates of the performance of such triglyceride mixtures as diesel fuel substitutes, since viscosity can be a key indicator of fuel performance for possible substitute diesel fuels. The crystallization temperatures of these two mixtures were also determined experimentally, and the effects of crystallization on fuel performance were projected. Additionally, the dynamic viscosities of pure triglycerides from C6∶0 to C18∶0 at 75°C were plotted vs. chain length. These viscosities were measured at high shear rates (>6 s−1) where dynamic viscosity is shear‐independent. An obvious trend in the relationship between triglyceride chain length and viscosity was observed. A second‐order regression was used to obtain an equation for this relationship. This equation was used as a model for composition dependence of viscosity. This model was applied to the viscosities of the triglyceride mixtures examined here. There was good agreement between the model and the actual, measured viscosity values determined in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.