Abstract

The mechanical dispersion technology used in this study employs rotor-stator mixers that produce water-continuous high internal phase emulsions (HIPEs) with narrow drop size distributions and small drop sizes, even when the internal phase (oil) viscosity is quite high. Analysis of these HIPEs reveals trends that are consistent with formation by a capillary instability mechanism in which a shear deformation produces highly elongated drops that rupture to form uniform, small droplets. In the search for a predictive tool to aid in the manufacture and use of HIPEs, rheology data for these shear-thinning HIPEs have been compared to data for models in the literature. Existing models do not correctly account for the effect of a high internal phase viscosity on the rheological properties of the HIPE. Another shortcoming is failure to correctly address the shear-thinning exponent. Whereas internal phase viscosity does not seem to affect the shear-thinning exponent, the surfactant apparently plays an important role, possibly through its modification of the interfacial tension and continuous phase rheology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.